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Abstract

Software development for applications in computational science and
engineering has become complex in recent years. This is mainly due
to the increasing parallelism and heterogeneity in modern computer ar-
chitectures and to the more realistic physical and mathematical models
that have to be processed. One idea to address this issue is to use
code generation techniques. In contrast to manual implementations in a
general-purpose computing language, they allow to integrate automatic
code transforms to produce efficient code for different models and plat-
forms. As an example the numerical solution of an elliptic partial differ-
ential equation via generated geometric multigrid solvers is considered.
We present three code generation approaches for it and discuss their
advantages and disadvantages with respect to performance, portability,
and productivity.

1 Introduction

Developing simulation software is often done in interdisciplinary teams consist-
ing of members from a particular application domain, applied mathematics,
and computer science. Due to their varying background in modeling, math-
ematics, and programming, suitable software tools can make the work and
especially the interfacing between the fields more productive. In the best case,
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there are specific tools for each user and there exists a toolchain that covers
all steps from the model formulation over specification of numerical methods
down to their concrete implementation on a certain platform. It should also
require minimal intervention from users.

We discuss in this paper different approaches to achieve this goal, which
are based on code generation techniques. This means that an abstract problem
specification is first translated into a domain-specific representation that can
then be processed successively. At the end one obtains simulation code that
can be either compiled or executed directly. As a simple example, we will
show how geometric multigrid solvers for elliptic partial differential equations
can be generated.

Classically most people use available software libraries or frameworks that
provide efficient multigrid solvers. Some of the popular ones are PETSc [2],
HYPRE [15], or Trilinos [27] which understands itself as a collection of pack-
ages rather than a single framework, such as Deal.II [3], DUNE [4, 8], UG4 [55],
Peano [56] and Chombo [1].

However, such frameworks are usually either too general to efficiently im-
plement domain-specific optimizations for multiple hardware platforms or a
high effort is required to adapt them. In practice, code generation techniques
can be used to tackle this. As input they use external or embedded domain-
specific languages (DSLs) and the output is usually either a complete program
or single compute kernels that can be injected into existing software.

A prominent example for an external DSL is SPIRAL [46, 45, 9] that was
originally developed for the domain of Fast Fourier transforms. It needs to
provide less functionality compared to a general purpose language and thus
is easier to maintain and use. Examples for DSLs in the domain of PDEs
are Liszt [13] and OP2 [44] that focus on solvers operating on unstructured
meshes, FEniCS [42] and Firedrake [47] that focus on finite element applica-
tions, SBLOCK [10] that focuses on block-structured grids, and PATUS [11],
Pochoir [53], Physis [43], SDSLc [48], MODESTO [23], or STELLA [24], short
for stencil loop language, that focus on structured grids. STELLA, e.g., is a
DSL embedded in C++ for applications in weather and climate simulation.

Another approach that is popular in practice but out of scope in this work
is given by language extensions that introduce abstractions for parallelization.
Examples are, among others, CHARM++ [28], Cilk [16], UPC [12], Dash [17],
or Kokkos [14]. Note that one reoccurring concept in many of these approaches
is a partitioned global address space. Here, data structures can be used as in
the serial case, but under the hood, they are distributed (semi-)automatically.
Synchronization of data is then done automatically upon accessing a datum
outside the local partition of the memory space.

One question arises now: what are the conceptional differences between



Code generation approaches for geometric multigrid solvers 125

existing DSLs for geometric multigrid solvers? To provide an answer to this,
we selected three different DSLs developed in our research group and discuss
their properties. The first is an multi-layered external DSL that covers several
levels of abstraction as described above from model to code. The second is
based on a classical software framework, which is extended by efficient compute
kernels. These are generated with the help of an external tool. The third is
an embedded DSL with special focus on just-in-time code generation.

The rest of the paper is structured as follows: Section 2 formulates the
basic mathematical problem under consideration and introduces different ab-
straction layers for it. Challenges for the implementation of the numerical
methods are pointed out and the requirements for a DSL that supports paral-
lel geometric multigrid solvers are listed. In section 3 we introduce the three
conceptionally very different approaches that enable the generation of software
for numerical algorithms, use all of them to generate a multigrid solver, show
performance results, and discuss the advantages and disadvantages of the ap-
proaches. Section 4 summarizes the paper and outlines possible directions for
future work.

2 Abstraction Layers

As a simple test case, we consider Poisson’s equation as an elliptic PDE that
can be described by

−∆u = f in Ω (1a)

u = g on ∂Ω (1b)

where Ω = (0, 1)d, d ∈ {2, 3}, u, f : Ω 7→ R, g : ∂Ω 7→ R, and where we assume
non-homogeneous Dirichlet boundary conditions.

Different layers of abstractions can describe the process of transforming
such a continuous PDE model into concrete code. These correspond to the
usual steps taken by a domain expert and are depicted in figure 1. Depending
on the application, various choices are possible on each layer.

Layer 1 (Continuous Model) While (1) is a simple test case, a DSL on
this layer should offer the following features to the user: definition of the com-
putational domain for different dimensions like 1D, 2D, and 3D; support for
common differential operators and boundary conditions; support for systems
of equations and nonlinear problems. Once the problem specification is fin-
ished, certain symbolic transformations that do preserve the underlying model
constraints can be applied to simplify or to manipulate the equations.
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Layer 1
Continuous Model

Layer 2
Discretization

Layer 3
Numerical Method

Layer 4
Parallelization and 
Application Logic

Layer 5
Intermediate Representation

Layer 6
Target Code

External code

Figure 1: An abstract mathematical PDE model is transformed to concrete
code using several layers of abstraction.

Layer 2 (Discretization) On this layer, many variants are possible to select
the partition of the domain in elements, e.g., quadrangles, triangles, cubes, and
to define discrete operators on them. Finite difference (FD), finite volume,
finite element (FE) or discontinuous Galerkin discretizations are some of the
most prominent methods. In this work, we restrict ourselves to uniform grids
and discretize (1) by FD or FE.

This results in a sparse linear system of equations Ahuh = fh with the
discretization matrix Ah ∈ RN×N , the vector of unknowns uh ∈ RN and the
right hand side (RHS) vector fh ∈ RN on a discrete grid Ωh. N denotes the
degrees of freedom or number of unknowns in the linear system. In our case,
A can be stored in a compact, matrix-free form using a constant stencil.

The DSL on this layer should offer the following features to the user: a
representation of discretized functions for solution, right hand side and possible
coefficients both for scalar and vector-values quantities; a representation of
the discrete operators as constant or variable stencils or stencil fields; different
grid types and discretization strategies. In the end continuous quantities are
discretized on the specified computational domain.
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Layer 3 (Numerical Method) This layer allows the user to express nu-
merical methods like solvers for linear systems. It is complementary to layer
2, since different discretization and solver specifications can be coupled in var-
ious ways. To solve the above discrete linear system approximately, we apply
a multigrid method [54]. As an iterative solver for large, sparse linear sys-
tems its major advantage is that it has a convergence rate independent of the
mesh size. One multigrid iteration, the so-called V-cycle, is summarized in
Algorithm 1.

Algorithm 1 Recursive V-cycle: u
(k+1)
h = Vh(u

(k)
h , Ah, fh, ν1, ν2)

1: if coarsest level then
2: solve Ahuh = fh by a (parallel) direct solver or by CG iterations
3: else
4: ū

(k)
h = Sν1h (u

(k)
h , Ah, fh) {presmoothing}

5: rh = fh −Ahū(k)h {compute residual}
6: rH = Rrh {restrict residual}
7: eH = VH(0, AH , rH , ν1, ν2) {recursion}
8: ũ

(k)
h = ū

(k)
h + PeH {prolongate error and do coarse grid correction}

9: u
(k+1)
h = Sν2h (ũ

(k)
h , Ah, fh) {postsmoothing}

10: end if

For users it is convenient if the DSL on this layer is as close as possible
to the high-level pseudo code used in Algorithm 1 for the chosen numerical
method. It should offer the following features to the user: support for multiple
grids with multiple resolutions; operators that map between grids with differ-
ent resolutions (restriction operator R and prolongation operator P ); support
for various common relaxation schemes like Jacobi or red-black Gauß-Seidel
(RBGS) smoothers; constructs like conditions or loops to be able to express
the solver logic, this usually includes an iteration loop with a termination
criterion such as the residual falling under a certain threshold; support for
reductions to evaluate norms and dot products.

Layer 4 (Parallelization and Application Logic) On this layer, the
information necessary to compose the complete specification is gathered.

A DSL on this layer should be close to a general purpose language with
certain restrictions that allow easier domain-specific abstractions and code
optimizations.

One part is the specification of the application logic. Here, input data,
efficient compute kernels for numerical operations including algorithmic pa-
rameters, loops, and data output and visualization have to be expressed. At
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some point within the application, the solver specified on layer 3 can be exe-
cuted. Another part is the parallelization concept that depends on the con-
crete platform on which the generated code will be executed. Suitable parallel
data structures, domain partitioning, parallelization strategies for vectoriza-
tion, shared-memory parallelization, distributed-memory parallelization, and
communication routines for data exchange and synchronization can be tuned.
On this layer, users merely provide the information required to actually real-
ize these aspects on layer 5. Note that one of the main differences between
code generation techniques is to which extent these requirements are contained
in an existing HPC framework or must be generated. External code can be
interfaced via, e.g., function calls on this layer. Embedding external code,
however, is not possible, since this would require to support all features of a
general purpose programming language.

Layer 5 (Intermediate Representation) This layer is internal, i.e., not
exposed directly to the user, and usually implemented in a general-purpose
programming language. Here, the main differences between the approaches
are found. Here, most of the domain-specific optimizations are applied. Ex-
amples are vectorization and loop transformations, data layout optimizations
like color-splitting and switching between AoS (array of structures) and SoA
(structure of arrays) layouts, or common sub-expression elimination either
only for expressions within one loop iteration or also between loop iterations.

Layer 6 (Target Code) This internal layer is the interface to the concrete
platform the code will be executed on and thus should provide support for mul-
tiple back ends targeting a wide range of machines. While multiple compute
nodes with CPUs and GPUs are found in many compute clusters currently,
additional support for embedded architectures and FPGAs may be beneficial.
In addition to that, interfaces to existing HPC software frameworks or legacy
codes can be generated, if there are parts of the application that are already
implemented and it is not necessary or possible to generate them again.

3 Code generation for geometric multigrid solvers

A lot of effort is necessary to maintain, adapt, and extend simulation frame-
works that cover all six layers described above. Understanding the abstractions
requires specialist skills, i.e., application, mathematical and computer science
expertise. This is only possible when domain scientists and computer scientists
collaborate over longer periods of time. But such a constellation is challeng-
ing to achieve and in many cases the effort is prohibitive. Therefore, in the
last years, various approaches to automate the process to derive a simulation



Code generation approaches for geometric multigrid solvers 129

code from a mathematical model by code generation have been explored. Our
group conducted research in several projects on both external and embedded
domain-specific HPC languages in Python [5], Scala [30], AnyDSL [52], C++
and CommonLisp [26].

In this section, we show how the mathematical problem stated in (1) can
be described in three different approaches that are currently in different stages
of development.

3.1 Test Problem

To show the performance of the resulting implementations we solve (1) in 2D
and 3D. The computational domain Ω is the unit square and unit cube, re-
spectively. As a solver, we employ a geometric multigrid solver using a V(2,1)-
cycle and Gauß-Seidel-type smoothers. Due to the specializations of the three
approaches, we use different discretizations and possibly different orderings
during the relaxation as well as appropriate interpolation and restriction rou-
tines. All components that are special to the individual implementations are
described below. For 2D we set the right-hand side

f = π2 cos(πx)− 4π2 sin(2πy), g = cos(πx)− sin(2πy)

as boundary value function. In 3D, we regard

f = π2 cos(πx)− 4π2 sin(2πy) + 4π2 cos(2πz),

and
g = cos(πx)− sin(2πy) + cos(2πz)

accordingly. Both test cases start from an initial guess u = 0 and stop as soon
as the L2-norm of the residual drops below 10−10.

3.2 Per-node Performance Estimation

To estimate the expected per-node performance, we use an optimistic roofline
model, since the performance is known to be limited by memory bandwidth in
this test case [31]. As benchmark machine, we choose one workstation with two
Intel Xeon Gold 5122 CPUs featuring four physical cores each. We measure
the achieved copy stream bandwidth using likwid∗ resulting in 39 GB/s per
CPU. Thus, the maximal throughput is 2 · 39 = 78 GB/s for both sockets.
For each degree of freedom (DoF) we have to load the right-hand side and
the solution and store the solution back to memory for one smoothing step.
For computing the residual the same holds, but instead of the solution we

∗https://hpc.fau.de/research/tools/likwid/
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store the residual. In case of an RBGS smoother we assume that we store the
different colors in separate fields and thus have to load and store each value
only once. In addition to that, we count 1 load operation for the restriction
and one load and one store for the prolongation and fused correction. Thus
on the finest level, 8 · (3 · 3 · 2 + 3 + 2 + 1) = 120 bytes per degree of freedom
are transferred for a V(2,1)-cycle and double accuracy. This is multiplied by a
factor of 1+1/4+1/16+1/64+· · · ≈ 1.33 in 2D resp. 1+1/8+1/64+· · · ≈ 1.14
in 3D for the case of a multigrid solver operating also on coarser levels. These
estimates provide a lower bound for the per-node performance, since they
neglect any potential overhead including synchronization. They also assume
perfect blocking, i.e., are independent of the concrete stencil shapes. In the
2D case the lower bound is then 487 MDoF/s and in the 3D case 568 MDoF/s.
We can check now how far off the performance of generated code is in practice.

3.3 ExaStencils

General concept The main aim of project ExaStencils† is the generation
of highly efficient and massively parallel geometric multigrid solvers from ab-
stract descriptions given in its own external DSL ExaSlang – short for Exa-
Stencils language [40, 41, 49].

ExaSlang is conceptualized as a multi-layered DSL, following the concepts
introduced in Section 2. On each layer, different aspects of a given problem
and associated solver can be specified. Ideally, it would be sufficient to state
the problem to be solved on layer 1. This includes the computational do-
main, boundary conditions, unknowns, and the equation(s) to be solved. In
practice, however, more domain knowledge is necessary, e.g., concerning the
discretization or numerical methods. We address this by supporting a guided
semi-automatic discretization that can be performed to generate layer 2. Here,
the discretized counterparts of layer 1 can be reviewed before a suitable solver
is composed on layer 3.

Information from layer 2 and 3 is then combined to form a complete pro-
gram specification on layer 4. Additionally, communication can be added
automatically for functions originating from layer 3. At this point, specifics
about memory layouts such as the number of ghost layers required for dis-
tributed memory parallelization are deduced and exposed as well [38]. All in
all, the (generated) layer 4 description is complete in the sense that it can be
used to generate target code without requiring layers 1 through 3. This is also
the layer where specialized data layout transformations, e.g. from an array of
structures (AoS) to a structure of arrays (SoA), can be specified [32].

†www.exastencils.org
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By design, users can intervene at any layer if they want to alter the gen-
erated parts of the code or if they want to express something that can not be
generated automatically yet. Likewise, it is possible and indeed common to
start at lower layers and to implement on multiple layers concurrently.

Features The ExaStencils code generator is implemented in Scala and is
able to process ExaSlang input to set up representations in its own inter-
mediate representation (IR). There, various code transformations are applied
such that it can, ultimately, be mapped to C++ code parallelized with MPI,
OpenMP and/or CUDA. Available transformations include automatic paral-
lelization [38] for the previously named back ends as well as the automatic
application of optimizations geared to the target hardware at hand. Ex-
amples for the latter are address pre-calculation, loop transformation, a so-
phisticated common sub-expression elimination (CSE) [34] and vectorization.
The emitted code can be executed on various platforms ranging from tradi-
tional CPU [36, 35] and hybrid CPU-GPU [37] clusters, ARM-based architec-
tures [39] to reconfigurable hardware [51, 50].

Layer 1 (Continuous Model) On layer 1, our benchmark problem can be
described by the DSL code shown in listing 1. As evident, the syntax is kept
close to the notation used in scientific publications. By providing so-called
hints for the discretization and solver components, the framework is able to
compose subsequent layer specifications automatically.

1 Ω = ( 0, 1 ) × ( 0, 1 )

2

3 u ∈ Ω = 0.0

4 u ∈ ∂ Ω = cos ( π x ) - sin ( 2 π y )

5 f ∈ Ω = π^2 cos ( π x ) - 4 π^2 sin ( 2 π y )

6

7 op = - ∆
8 uEq: op * u == f

9

10 DiscretizationHints {

11 f on Node

12 u on Node

13 op on Ω
14

15 uEq

16 // parameters

17 discr_type = "FiniteDifferences"

18 }

19



Code generation approaches for geometric multigrid solvers 132

20 SolverHints {

21 generate solver for u in uEq

22 }

Listing 1: ExaSlang layer 1 example for the complete specification of the 2D
Poisson problem.

Layer 2 (Discretization) At this layer, the discrete domain and the dis-
crete linear system have to be described. Listing 2 illustrates how a discretized
variant of the previous specification can be set up on layer 2. It is similar to
a version automatically generated using the provided discretization hints.

1 global from [ 0, 0 ] to [ 1, 1 ]

2

3 Solution with Real on Node of global = 0.0

4 Solution@finest on boundary =

5 cos ( PI * x ) - sin ( 2.0 * PI * y )

6 Solution@(all but finest) on boundary = 0.0

7

8 RHS with Real on Node of global =

9 PI**2 * cos ( PI * vf_nodePos_x ) -

10 4.0 * PI**2 * sin ( 2.0 * PI * vf_nodePos_y )

11

12 Laplace from Stencil {

13 [ 0, 0] => 2.0 / ( vf_gridWidth_x **2 ) +

14 2.0 / ( vf_gridWidth_y **2 )

15 [-1, 0] => -1.0 / ( vf_gridWidth_x **2 )

16 [ 1, 0] => -1.0 / ( vf_gridWidth_x **2 )

17 [ 0, -1] => -1.0 / ( vf_gridWidth_y **2 )

18 [ 0, 1] => -1.0 / ( vf_gridWidth_y **2 )

19 }

20

21 SolEq {

22 Laplace * Solution == RHS

23 }

Listing 2: ExaSlang layer 2 example for a complete specification of the 2D
Poisson problem.

Layer 3 (Numerical Method) While layer 2 is used to express the prob-
lem, layer 3 is geared towards algorithmic components of the numerical solver.
Such a solver, which is again similar to the auto-generated variant, is displayed
in listing 3.
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1 Field Residual from Solution

2 override bc for Residual with 0.0

3

4 Operator Restriction from default restriction

5 on Node with ’linear ’

6 Operator Prolongation from default prolongation

7 on Node with ’linear ’

8

9 Function Smoother@all {

10 Solution += diag_inv ( Laplace ) * ( RHS -

11 Laplace * Solution ) where (i0 + i1) % 2 == 0

12 Solution += diag_inv ( Laplace ) * ( RHS -

13 Laplace * Solution ) where (i0 + i1) % 2 == 1

14 }

15

16 Function VCycle@coarsest {

17 /* implementation of a coarse -grid solver */

18 }

19

20 Function VCycle@(coarsest + 1 to finest) {

21 Smoother ( )

22 Smoother ( )

23 Residual = RHS - Laplace * Solution

24 RHS@coarser = Restriction * Residual

25

26 Solution@coarser = 0.0

27 VCycle@coarser ( )

28

29 Solution += Prolongation@coarser * Solution@coarser

30 Smoother ( )

31 }

Listing 3: ExaSlang layer 3 implementation of a V(2, 1)-cycle using a RBGS
smoother.

Layer 4 (Complete Specification) Based on the layer 2 and 3 specifica-
tions, a complete layer 4 program, comparable to the one in listing 1, can be
assembled. Details about the data structures, such as the number of overlap-
ping and ghost layers as well as which of them are to be communicated, can
be adapted here. communicate statements provide an easy-to-use interface
to fine-tune the communication behavior. Here, it would also be possible to
manually overlap computation and communication.

1 Layout DefLayout <Real , Node >@all {

2 duplicateLayers = [1, 1] with communication
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3 ghostLayers = [1, 1] with communication

4 }

5

6 Field Solution < global , DefLayout , /* bc’s */ >@finest

7 Field Solution < global , DefLayout , 0.0 >@(all but finest)

8 Field RHS < global , DefLayout , None >

9 Field Residual < global , DefLayout , 0.0 >

10

11 /* operators as on layers 2 and 3 */

12

13 Function Smoother@all {

14 color with (i0 + i1) % 2 {

15 loop over Solution {

16 Solution += omega * diag_inv ( Laplace ) *

17 ( RHS - Laplace * Solution )

18 }

19 communicate Solution

20 }

21 }

22 /* VCycle functions */

23

24 Function Application {

25 /* initialization */

26 reapeat 10 times {

27 VCycle@finest ( )

28 }

29 /* de-initialization */

30 }

Listing 4: ExaSlang layer 4 example of a full application applying a fixed
number of V-cycles.

Runtime results Based on these representations, we benchmark our gener-
ated multigrid solvers of our benchmark problem from section 3.1. The finite
difference discretization results in a 5-point (2D) and a 7-point (3D) stencil.
We employ V(2, 1)-cycles with a RBGS smoother and evaluate a serial ver-
sion as well as an OpenMP parallel one using 16 threads. The results are
summarized in table 1.

Using the performance model outlined in section 3.2, we obtain an opti-
mistic performance prediction of about 2.3s in 2D and 1.9s in 3D per multigrid
cycle for the case of 1.1 · 109 degrees of freedom (DoF).

Since the ExaStencils framework is able to apply a suitable color split-
ting [33], the measured times of 2.6s (423 MDoF/s) and 3.0s (314 MDoF/s)
are very satisfactory. Of course one cannot expect to reach the estimate, e.g.,
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the same color splitting makes the inter-grid kernels much more complex and
thus likely more costly than the prediction. In 3D the stencil becomes bigger
and the memory accesses are more complex what increases runtime. A more
detailed analysis is beyond the scope of this work.

Discr. Dim DoFs Iter L∞-error Time / Cycle [s]
Num cores
1 8

FD 2D 4.2 · 106 10 7.2e-07 0.054 0.007
1.7 · 107 10 1.8e-07 0.25 0.033
6.7 · 107 10 4.5e-08 0.96 0.15
2.7 · 108 10 1.1e-08 3.7 0.60
1.1 · 109 10 2.8e-09 19 2.6

FD 3D 2.0 · 106 12 3.6e-04 0.025 0.004
1.7 · 107 12 9.0e-05 0.28 0.037
1.3 · 108 12 2.2e-05 2.3 0.36
1.1 · 109 12 5.6e-06 20 3.0

Table 1: Performance results for multigrid (V(2, 1)-cycle, RGBS) solvers gen-
erated by the ExaStencils framework.

3.4 HyTeG

General concept HyTeG (Hybrid Tetrahedral Grids) [29] is a massively
parallel finite element framework with a strong focus on matrix-free geometric
multigrid solvers on block-structured tetrahedral grids. It is built around the
concept of hierarchical hybrid grids as introduced in the early 2000s [6, 7]. As a
re-design of the prototype framework HHG [18, 21], we aim to extend the core
concepts of HHG to advanced discretizations and flexible data structures. The
matrix-free multigrid solvers have proven their computational and numerical
performance as well as their extreme scalability in geophysical applications
[19, 22].

While the tetrahedral coarse-grid structure of domains in HyTeG offers
more geometric flexibility than cuboid grids, the manual development of effi-
cient compute and communication kernels is more challenging. We alleviate
this problem by an extension to the pystencils‡ framework that allows us to
generate kernels that operate on simplicial data arrangements.

‡https://i10git.cs.fau.de/pycodegen/pystencils
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Features HyTeG adopts a rather classical approach to simulation soft-
ware. The discretization and solver algorithms are defined directly in the
C++ framework. Application scientists are then able to modify and extend
the source code themselves without having to learn a domain specific language.
Moreover, interfacing with other C or C++ libraries is directly possibly.

However, due to the block-structured tetrahedral grids, the development of
efficient kernels is to a large extend shifted to the code generation library pys-
tencils. pystencils is a Python software library that automates the generation
of numeric codes from a symbolic description. It extends the sympy library by
data structures that represent the (discrete) computational domain. However,
pystencils, opposed to the ExaStencils approach, generates compute kernels
that are called from the C++ framework.

Apart from AST- and algebraic optimization techniques, HyTeG extends
the pystencils library by a special field-access resolution for simplices. To
operate on fields with different shapes (e.g. cuboid, tetrahedral, triangular)
and different discretizations (FD, FE), indexing transformations have been
developed as an abstraction from the underlying update pattern.

In HyTeG we require matrix-free compute and communication kernels
that operate on finite-element discretizations of different numerical order. We
avoid on-the-fly integration over the elements when possible and employ an
automatically optimized stencil-based update pattern instead. For example
for constant-coefficient operators, the integrals can be replaced with such a
stencil-based kernel, where the resulting stencil is constant in every coarse-grid
element. In this way, the block-structured domain partitioning into tetrahe-
drons is exploited, and the generator yields computationally efficient kernels.

Layer Formulations Similar to other classical frameworks, HyTeG does
not offer an explicit representation for the continuous model. It is entirely
defined outside of the framework by an application scientist. The finite el-
ement discretization and stencil assembly is done by the C++ framework.
The tetrahedral meshes are implicitly defined through uniform refinement of
the coarse grid elements. As for the operators, we partly implement our own
C++ routines and also in some cases use the FEniCS [42] form compiler (FFC)
to generate routines that compute the required local stiffness matrices. We
assemble the stencils either in a setup phase, or on-the-fly as part of the com-
pute kernels. The numerical methods are implemented as C++ templates in
HyTeG. The individual kernels that are called by the framework are black-
boxes and defined at layer 4.

In our showcase, we employ a geometric multigrid iteration (see listing 5).

1 if ( level == minLevel_ )

2 {
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3 coarseSolver_ ->solve( A, x, b, minLevel_ );

4 }

5 else

6 {

7 for ( uint_t i = 0; i < preSmoothingSteps; ++i )

8 smoother_ ->solve( A, x, b, level );

9

10 A.apply( x, ax_ , level , flag_ );

11 tmp_.assign( {1.0, -1.0}, {b, ax_}, level , flag_ );

12

13 restrictionOperator_ ->restrict( tmp_ , level , flag_ );

14

15 b.assign( {1.0} , {tmp_}, level - 1, flag_ );

16 x.interpolate( 0, level - 1 );

17 solveRecursively( A, x, b, level - 1 );

18

19 tmp_.assign( {1.0}, {x}, level , flag_ );

20 prolongationOperator_ ->prolongate(x,level - 1,flag_ );

21 x.add( {1.0} , {tmp_}, level , flag_ );

22

23 for ( uint_t i = 0; i < postSmoothingSteps; ++i )

24 smoother_ ->solve( A, x, b, level );

25 }

Listing 5: C++ implementation of a V-cycle in the HyTeG framework
(stripped). The individual kernels (smoothers, restriction, etc.) are gener-
ated.

At this point, parallelization is already fully included in the C++ framework.
The communication, performed via MPI, is hidden behind the low-level build-
ing blocks such as matrix-vector multiplication or grid transfer. In a last step,
we generate the individual compute kernels that are called by the numerical
algorithm. This happens at compile time using the pystencils library. In list-
ing 6 we show a Python recipe that is used to generate a Gauß-Seidel with
overrelaxation kernel for a 3D discretization. sp refers to sympy.

1 rhs = VertexTetrahedronField(’rhs’, const=True)

2 dst = VertexTetrahedronField(’dst’)

3

4 stencil_map = StencilMap(’p1_stencil ’, [tuple], float)

5

6 relax = TypedSymbol(’relax’, float)

7

8 s = sum([ stencil_map(d) * dst(d)

9 for d in vertexdof_neighbors_at_vertexdof(

10 dim=3, with_center=False )])
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11

12 update = sp.Eq(dst((0, 0, 0)),

13 (1.0 - relax) * dst((0, 0, 0)) +

14 relax * ((rhs((0, 0, 0)) - s) /

15 stencil_map ((0, 0, 0))))

Listing 6: pystencils recipe for the Gauß-Seidel with overrelaxation algorithm
applied to a 3D, scalar operator that is discretized with tetrahedrons and
linear, conforming finite elements.

The pystencils recipes are transformed into an AST internally during the kernel
generation. This AST undergoes various transformations and optimizations
before the backend emits the final C++ code. The resulting application is
compiled with a C++ compiler.

Runtime Results We discretize (1) using linear (P1) and quadratic (P2)
conforming finite elements for both the 2D and 3D test case. The resulting
stencils are much denser than those originating from the finite difference dis-
cretizations. For example, we end up with a 7-point stencil in 2D and 15-point
stencil for the linear 3D case. For the 3D quadratic finite element discretiza-
tion we end up with different stencil sizes roughly between 20 and more than
70 points.

We emphasize that the benchmark setting is unfavorable for the triangular
and tetrahedral grids that are employed in HyTeG. The geometric flexibility
that this approach offers is not at all exploited by a benchmark on a unit
square or cube respectively. For all of these reasons, the results cannot be
compared directly to the other approaches, but can only roughly classify the
overall performance.

We employ a lexicographic Gauss-Seidel smoother for the linear discretiza-
tions and a multi-color ordering for the quadratic test cases that is tied to the
orientation of the edges and the corresponding, constant stencils. See [29] for
more details. The execution is performed MPI-parallel, without OpenMP on a
single node. The results are listed in table 2 and in table 3. In 2D, we achieve
up to 200 MDoF/s (P1) and 198 MDoF/s (P2), in 3D 142 MDoF/s (P1) and
87 MDoF/s (P2) for one V(2,1)-multigrid cycle. Due to the lexicographic it-
eration, no vectorization is performed in the smoother. Also, vectorization is
harder to accomplish in general because of the triangular/tetrahedral memory
layout.

The simplistic performance model in section 3.2 only partly fits to the
HyTeG implementation, since both, the stencils and the memory layout are
different. In the three-dimensional linear case and in the quadratic case, we
cannot even assume that the kernels are bound by the bandwidth of the system
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since the stencils are much larger [20]. A detailed performance model is out
of the scope of this article.

However, the HyTeG approach only loses about a factor 2 of performance
comparing the linear finite element cases with the finite difference discretiza-
tion of ExaStencils.

Discr. DoFs Iter L∞-error Time / Cycle [s]
Num cores

1 2 4 8

P1 8.4 · 106 9 2.8e-06 .31 .16 .09 .05
3.4 · 107 8 7.5e-07 1.17 .60 .32 .17
1.3 · 108 8 2.6e-07 4.57 2.32 1.25 .68
5.4 · 108 8 2.7e-07 19.71 9.15 4.94 2.70

P2 8.4 · 106 9 1.4e-09 .34 .18 .11 .07
3.4 · 107 9 2.5e-09 1.20 .62 .35 .20
1.3 · 108 9 9.7e-09 4.55 2.35 1.32 .73
5.4 · 108 8 3.9e-08 19.34 9.14 5.17 2.73

Table 2: Performance results in 2D for the multigrid (V(2,1)-cycle) implemen-
tation for finite element discretizations in the HyTeG-framework.

Discr. DoFs Iter L∞-error Time / Cycle [s]
Num cores

1 2 4 8

P1 8.5 · 106 10 4.3e-04 .51 .28 .17 .09
6.8 · 107 9 1.5e-04 3.44 1.88 1.03 .55
5.4 · 108 7 5.7e-05 26.39 13.05 7.08 3.81

P2 8.5 · 106 9 3.1e-06 2.01 1.11 .75 .42
6.8 · 107 9 6.0e-07 5.95 3.35 2.12 1.18
5.4 · 108 8 2.1e-06 38.87 20.35 11.52 6.22

Table 3: Performance results in 3D for the multigrid (V(2,1)-cycle) implemen-
tation for finite element discretizations in the HyTeG-framework.
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3.5 Petalisp

General Concept Inspired by array programming languages like APL, and
parallel programming languages like SISAL and SAC, Petalisp is a minimalistic
embedded DSL for parallel array computations, written in Common Lisp. The
goal of the project is to investigate the potential of generating and compiling
kernels at runtime, based on simple data-flow graphs that are also assembled
at runtime. At its core, Petalisp provides only a single data structure – the
lazy, strided array – and four primitive operators. These operators are:

• map The operator α applies a pure function of arity n element-wise to
the n supplied arrays of identical shape. It returns an array of the same
shape, containing all results. If the shapes of the given input arrays are
different, an attempt is made to broadcast smaller arrays to the shape
of larger ones automatically.

• reduction The operator β reduces the elements an array with rank
n along the first axis, using some pure, binary function. It returns an
array of rank n− 1, containing the results of each individual reduction.

• fusion The operator fuse combines several smaller arrays of identical
rank into a single, large array. An error is signaled if the given arguments
overlap, or if the result cannot be expressed as a strided array, e.g., when
there are large gaps, or when arrays of different strides are placed next
to each other.

• reference The operator reshape takes an array, an array shape S, and
an affine-linear transformation T from index tuples to index tuples, and
returns an array of shape S, where each element with index tuple I has
the same value as the entry of A with index tuple T (I).

A more elaborate description can be found in [25].

Features Petalisp differs significantly from established HPC practices and
even code generators in that it relies exclusively on just-in-time compilation.
For that, a lot of analysis, optimization, code generation, and compilation is
taking place under the hood. But since our implementation can carry out all
these tasks in just a few microseconds, we can hide this process from the user
and pretend that Petalisp is a purely interpreted scripting language.

Another peculiarity about Petalisp is that it is an untyped programming
language. No restrictions are made on what objects are permissible in an
array. Thanks to runtime type inference, this will not slow down carefully
written numerical programs.
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Petalisp employs a variety of optimization techniques, e.g., constant fold-
ing, folding of consecutive affine-linear indirections, hoisting of loop-invariant
code, loop reordering, and automatic shared-memory parallelization.

Layer Formulations We describe how Petalisp relates into the previously
introduced layer model. It does not provide any facilities for mathematical
modeling or automatic discretization, so the tasks on layers 1 and 2 must
either be resolved manually, or by using existing Lisp libraries such as the
computer algebra system Maxima. A Petalisp user typically starts on layer 3,
by solving a discrete problem using a mixture of standard Common Lisp code
and Petalisp lazy arrays. Any set of arrays can be considered a full program
that is invoked by explicit evaluation of these arrays. In this sense, the closest
thing that Petalisp has to a layer 4 description is the data flow graph that
describes the construction of one or more arrays. The layers 5 and 6 are
canonical, except that the intermediate representation is highly optimized for
compilation speed.

For our benchmark example, the separation into layers means that the grid
generation functions in figure 2, the smoother in figure 4, and the final V-cycle
in figure 3 for the layer 3 specification of the problem. The lazy array that is
the result of one or more multigrid iterations is the root of a very large data
flow graph. This graph is the layer 4 specification of the problem to be solved.
Due to its size, we cannot show the entire multigrid data flow graph. But,
for illustration, we present the subgraph corresponding to a single smoothing
step in figure 5.

(defun make-unit-square (N fn)1

(flet ((coord-from-index (index)2

(/ (coerce index ’double-float)3

(coerce (1- N) ’double-float))))4

(let* ((shape (~ 0 (1- N) ~ 0 (1- N)))5

(x (α #’coord-from-index (indices shape 1)))6

(y (α #’coord-from-index (indices shape 0))))7

(values (α fn x y) x y))))8

9

(defun make-grid (N fn)10

(fuse* (make-unit-square N fn)11

(reshape 0d0 (~ 1 (- N 2) ~ 1 (- N 2)))))12

Figure 2: Discrete domain functions in Petalisp.
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(defun v-cycle (u f h v1 v2)1

(if (<= (range-size (first (shape-ranges (shape u)))) 3)2

(rbgs u f h 3) ; solve "exactly"3

(let* ((x (rbgs u f h v1))4

(r (restrict (residual x f h)))5

(c (v-cycle (reshape 0 (shape r)) r (* 2 h) v1 v2)))6

(rbgs (α #’+ x (prolongate c)) f h v2))))7

Figure 3: V-cycle in Petalisp.

(defun rbgs (u f h &optional (iterations 1))1

(labels ((update (&rest spaces)2

(setf u (apply #’fuse* u spaces)))3

(stencil (S)4

(α #’* (float 1/4)5

(α #’+6

(reshape (reshape u (τ (i j) ((1+ i) j))) S)7

(reshape (reshape u (τ (i j) ((1- i) j))) S)8

(reshape (reshape u (τ (i j) (i (1+ j)))) S)9

(reshape (reshape u (τ (i j) (i (1- j)))) S)10

(reshape (α #’* (* h h) f) S)))))11

(trivia:ematch (shape u)12

((~ a b ~ c d)13

(let ((red-1 (~ (+ a 1) 2 (1- b) ~ (+ c 2) 2 (1- d)))14

(red-2 (~ (+ a 2) 2 (1- b) ~ (+ c 1) 2 (1- d)))15

(black-1 (~ (+ a 1) 2 (1- b) ~ (+ c 1) 2 (1- d)))16

(black-2 (~ (+ a 2) 2 (1- b) ~ (+ c 2) 2 (1- d)))))17

(loop repeat iterations do18

(setf u (fuse* u (stencil red-1) (stencil red-2)))19

(setf u (fuse* u (stencil black-1) (stencil black-2))))20

u))))21

Figure 4: Red-Black Gauß-Seidel smoother in Petalisp.
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Figure 5: Data flow graph of one RBGS iteration in Petalisp, consisting of
immediates (ellipses), references (boxes) and operations (circles).
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Runtime Results Runtime results of using Petalisp to compute a multigrid
V-cycle are shown in table 4. The shared-memory parallelization is based on
operating system threads. We achieve 53 MDoF/s in 2D and 42 MDoF/s in 3D.
Note that two crucial optimizations – vectorization and locality optimization in
space and time – have not yet been implemented. Furthermore, the automatic
parallelization is very recent work and does not yet fully saturate all cores.

Dim DoFs mesh width Time / Cycle [s]
Num cores
1 8

2D 1.0 · 106 2−10 0.07 0.07
4.2 · 106 2−11 0.24 0.13
1.7 · 107 2−12 0.95 0.32

3D 2.0 · 106 2−7 0.16 0.11
1.7 · 107 2−8 1.59 0.40

Table 4: Performance results for multigrid (V(2,1)-cycle, RGBS) implementa-
tions on Petalisp.

Nevertheless, we see that for the serial case the execution time of Petalisp is
just about a factor of four slower than an equivalent, optimized C++ program
generated by the ExaStencils framework. Petalisp generates and compiles all
its code at runtime and that the generated kernels are also written in Common
Lisp. This teaches two valuable lessons. The first lesson is that it is feasible to
generate and compile whole programs at runtime on modern computers. The
second lesson is that modern Common Lisp compilers can be used to generate
HPC code.

3.6 Discussion

We discuss advantages and disadvantages of the three presented approaches,
namely external DSLs, internal DSLs and HPC frameworks with generated
add-ins, regarding performance, portability and productivity.

In terms of performance, ExaStencils and HyTeG are able to deliver com-
petitive results and to exhaust a good portion of the available hardware capa-
bilities, at least for the examined benchmark problem. The Petalisp approach
is promising, but still under development.

Portability to other hardware platforms is straight-forward for users of ex-
ternal DSLs since no changes to the implementation in the DSL are necessary.
The same holds for all generated portions of the other two approaches, whereas
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caution and potentially more work is required for the remaining code or frame-
work parts. For the developers of an embedded or external DSL adding a new
platform requires to write potentially adapted code transforms and an addi-
tional backend in case of a different architecture. For framework developers
the underlying code has to be extended.

Our last metric, productivity, is the hardest to quantify since it strongly
depends on the users or developers prior knowledge and abilities. For users,
learning a new language, even a compact one such as an DSL, can be chal-
lenging. This can be remedied to some extend by using internal DSLs, but
only if the user is already proficient with the host language, which can be an
issue when using less prevalent ones such as Lisp.

In the case of frameworks, users need to implement in two different lan-
guages as well, but since both of them are general purpose languages chances
are high that users are already familiar with them.

For developers, DSLs are more demanding than classical frameworks, since
they have to implement code transforms to manipulate certain representations
on different levels of abstraction instead of directly implementing algorithms.
One interesting point here is the amount of work that is required, if we imple-
ment a problem outside the originally intended scope. In our opinion, this is
easiest in the framework case, already quite hard when using embedded DSLs,
and virtually impossible for most cases when using external DSLs. If one re-
gards the separation of concerns as an important feature, the multi-layered
external DSL is beneficial since it explicitly defines different layers of abstrac-
tion. For the other two approaches part of the layers is contained in the DSL
constructs and part in the underlying Lisp resp. C++ code.

4 Summary and Future Work

Currently, there is a trend to enhance the traditional way of implementing
simulation codes to increase portability and productivity while at the same
time keeping the expected high performance.

We have studied three different code generation approaches, an external
DSL, an internal DSL, and an extended framework, which try to achieve this
goal, and applied them to create a geometric multigrid solver for elliptic par-
tial differential equations. With respect to performance code generation can
compete with classical hand-tuned implementations. For portability and pro-
ductivity, it depends on the role. Users profit from higher levels of abstractions
and hardware-independent descriptions, but have to learn a new language for
that. Developers can avoid code duplication, e.g. when switching to another
platform or a similar algorithm, but need to have a deeper understanding
of compiler techniques and potentially have to work with a more complex
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toolchain involving several programming languages.
In the next years, one can expect that the best of the arising approaches

will be used and integrated by the framework and application developers. In
case of ExaStencils, a Python frontend for ExaSlang will be provided to attract
more users. Besides that, ExaStencils is already extending his own domain by,
e.g., allowing further more general block-structured grid types. Tools like pys-
tencils can be fully integrated also in other HPC frameworks. This enables the
framework user to work more and more in Python instead of C++. PetaLisp
is still ongoing research, but it already shows high potential for just-in-time
compilation. However, it has to prove its efficiency and scalability on large
distributed-memory machines, and since it requires knowledge of Common
Lisp up to now, we are also working on a user-friendly Python interface to it.
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of global address space languages: Co-array Fortran and unified parallel
C. In Proceedings of the Tenth ACM SIGPLAN Symposium on Princi-
ples and Practice of Parallel Programming, PPoPP ’05, pages 36–47, New
York, NY, USA, 2005. ACM.



Code generation approaches for geometric multigrid solvers 148

[13] Z. DeVito, N. Joubert, F. Palaciosy, S. Oakley, M. Medina, M. Barrien-
tos, E. Elsen, F. Ham, A. Aiken, K. Duraisamy, E. Darve, J. Alonso, and
P. Hanrahan. Liszt: A domain specific language for building portable
mesh-based PDE solvers. In Proceedings of 2011 International Confer-
ence for High Performance Computing, Networking, Storage and Analysis
(SC), pages 1–12. ACM, 2011.

[14] H. C. Edwards, C. R. Trott, and D. Sunderland. Kokkos: Enabling
manycore performance portability through polymorphic memory access
patterns. Journal of Parallel and Distributed Computing, 74(12):3202 –
3216, 2014. Special issue on Domain-Specific Languages and High-Level
Frameworks for High-Performance Computing.

[15] R. D. Falgout, J. E. Jones, and U. M. Yang. The design and implemen-
tation of hypre, a library of parallel high performance preconditioners. In
Numerical Solution of Partial Differential Equations on Parallel Comput-
ers, pages 267–294, Berlin, Heidelberg, 2006. Springer.

[16] M. Frigo, C. E. Leiserson, and K. H. Randall. The implementation of
the Cilk-5 multithreaded language. SIGPLAN Not., 33(5):212–223, May
1998.

[17] K. Fürlinger, C. Glass, A. Knüpfer, J. Tao, D. Hünich, K. Idrees,
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